Synthesis and crystal structure of a caesium α-cyanobenzothiazole- α carbaldehyde oximate complex with a crown ether (L): new evidence for the stability of $\left[\mathrm{C}_{2} \mathrm{~L}_{3}\right]^{2+}$ club sandwiches

Konstantin V. D omasevitch,*† Vera V. P onomareva and E duard B. R usanov
Inorganic C hemistry Department, K iev U niversity, V olodimirska Street 64, K iev 252033, U kraine

The reaction of $\mathrm{CS}_{2} \mathrm{CO}_{3}$, 18-crown- $6(1,4,7,10,13,16$-hexaoxacyclooctadecane) and α-cyanobenzothiazole-α-carbaldehyde oxime (H cbto) resulted in the formation of $\left[\mathrm{Cs}_{2}(18-\mathrm{crown}-6)_{3}\right]\left[\mathrm{H}(\mathrm{cbto})_{2}\right]_{2} \cdot 2 \mathrm{H}$ cbto $\cdot 2 \mathrm{H}_{2} \mathrm{O}$. $X-R$ ay diffraction analysis revealed a genuine club sandwich centrosymmetric structure for the complex cation $\left[\mathrm{Cs}_{2}(18-c r o w n-6)_{3}\right]^{2+}$ with one of the crown ligands placed between the two caesium atoms, and is important evidence for the stability of such macrocyclic complexes. The metal atoms adopt twelve-fold co-ordination in a distorted hexagonal-antiprismatic geometry. The 'central' 18-crown-6 molecule displays longer co-ordination interactions Cs-0 [3.393(5)-3.636(5), average ca. 3.511(5) \AA] than the 'border' crown ligand [3.152(7)-3.431(8), average ca. $3.265(8) \AA$]. The caesium atom deviates from the mean plane of the six oxygen atoms by $2.167(1) \AA$ in the first case and $1.640(3) \AA$ in the second. H ydrogen bonding is considered to be important in the crystal packing.

Crown ethers are selective complexing agents for a wide variety of cations, including alkali-, alkaline-earth-metal, lead(II) and thallium(I) ions, and interactions in the $\mathrm{M}^{\mathrm{n+}}$-crown ligand systems have been studied in solution as well as in the solid state ${ }^{1-5}$ It was shown that the behaviour of practically every metal ion towards the crown ligands may be controlled by varying its counter anion. ${ }^{2}$ Thus, although the cavity of 18 -crown-6 ($1,4,7,10,13,16$-hexaoxacyclooctadecane) seems to be too small to give centrosymmetric complexes [M (18-crown-6)] ${ }^{+}$ with most large cations ($\mathrm{Rb}^{+}, \mathrm{Tl}^{+}$or Cs^{+}), ${ }^{1}$ such complexes in the solid state may be stable in the case of centrosymmetric single charged counter anions. Hydrogen halides $\mathrm{HX}_{2}{ }^{-}$ ($\mathrm{X}=\mathrm{F}$ or Cl), ${ }^{6}$ nitrates $\left(\mathrm{X}=\mathrm{NO}_{3}\right)^{6}$ or more complex oximates ($\mathrm{X}=\mathrm{ONCZ}{ }^{1} Z^{2} ; \mathrm{Z}^{1}, Z^{2}=\mathrm{CN}, \mathrm{CONH} \mathrm{H}_{2}$ or $\left.\mathrm{Heteraryl}^{7}\right)^{7}$ may be suggested as suitable anions in this context. Recently we described the crystal structure of an unprecedented thallium(I) hydrogen α-cyanobenzothiazole- α-carbaldehyde oximate complex with 18 -crown-6, in which the large thallium atom (ionic radius $1.50 \AA{ }^{6}$) resides exactly in the centre of the crown ether cavity. ${ }^{7}$
We were not successful in the preparation of such compounds for caesium (ionic radius $1.67 \AA^{6}$). U nder the conditions used 2:3 caesium-18-crown-6 complexes were isolated, which represent a rarely encountered type of macrocyclic compounds, the so-called triple decker club sandwiches. ${ }^{1,2,8}$ The factors affecting the structures of such crown ether complexes are not readily comprehensible ${ }^{1,2}$ and crystal structure studies of these species are of special interest in this context. To date only one example of a triple decker club sandwich cation has been reported ${ }^{8}$ and practically in all $\mathrm{M}^{\mathrm{n+}}$-crown ether systems, reported earlier to have 2:3 stoichiometry, the additional crown ether molecule is not bound to the metal centre but held loosely in the lattice. ${ }^{2}$ Herein we describe the synthesis and crystal structure of a new genuine $\left[\mathrm{Cs}_{2}(18 \text {-crown- } 6)_{3}\right]^{2+}$ club sandwich compound.

Results and D iscussion

The structure of the compound $\left[\mathrm{Cs}_{2}(18-\text { crown-6) })_{3}\left[\mathrm{H}(\mathrm{cbto})_{2}\right]_{2}\right.$. 2 H cbto $\cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ (H cbto $=\alpha$-cyanobenzothiazole- α-carbaldehyde oxime) is depicted in Figs. 1-3. The lattice comprises complex cations $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) }]^{2+}\right.$, accompanied in a $1: 2$ proportion by hydrogen oximate anions $\left[\mathrm{H}(\mathrm{cbto})_{2}\right]^{-}$and frag-

Fig. 1 Perspective view of the $\left[\mathrm{C}_{2}(18 \text {-crown-6) }]^{2+}\right.$ club sandwich cation represented by 30% probability ellipsoids for thermal motion and showing the atom numbering scheme. Hydrogen atoms are omitted for clarity

Hebto ${ }^{-} \mathrm{H}_{2} \mathrm{O}$

Fig. 2 Perspective view, with 40% probability ellipsoids, of the $\left[\mathrm{H}(\mathrm{cbto})_{2}\right]^{-}$and $\mathrm{Hcbto} \cdot \mathrm{H}_{2} \mathrm{O}$ moieties, showing the atom numbering scheme

Fig. 3 F ragment of the crystal structure. Projection on the yz plane
ments of composition $\mathrm{Hcbto} \cdot \mathrm{H}_{2} \mathrm{O}$. The geometrical parameters of the three unique fragments (cbto) do not exhibit essential differences and agree satisfactorily with results obtained from a crystallographic investigation of the $[T I(18$-crown-6)]$\left[\mathrm{H}(\mathrm{cbto})_{2}\right]$ and $\mathrm{Cs}\left[\mathrm{H}(\mathrm{cbto})_{2}\right] \cdot \mathrm{H}_{2} \mathrm{O}$ complexes. ${ }^{7}$

The centrosymmetric $\left[\mathrm{Cs}_{2}(18 \text {-crown- } 6)_{3}\right]^{2+}$ cation has a 'club sandwich' structure with one of the crown ligands placed between the two caesium atoms (Figs. 1 and 3). The latter adopt twelvefold co-ordination in a distorted hexagonalantiprismatic geometry. Thus, in accordance with the most convenient classification of the crown ether complexes, this is a case of complete encapsulation of the caesium atoms by 18 -crown6. ${ }^{1,2}$ Both the unique 18 -crown- 6 molecules are bound to the metal, and the Cs-0 separations are within the range 3.152(7)$3.636(5) \AA$ (Table 1), which only slightly exceeds the values for thestandard bonding distances ($3.03-3.34 \AA^{2-4}$) for the caesiumcrown systems. It should be noted here that the 'central' 18-crown-6 molecule (B, Fig. 1) displays longer co-ordination interactions [3.393(5)-3.636(5), average ca. 3.511(5) \AA], than the 'border' (A) one [3.152(7)-3.431(8), average ca. 3.265(8) A]. The caesium atom deviates from the mean plane of six oxygen atoms by $2.167(1) \AA$ in the first case and 1.640(3) \AA in the second. The latter value is typical of the large Cs^{+}cation coordinated to an 18-crown-6 molecule. ${ }^{2-4}$

Evidently, the caesium-central crown interaction is slightly weaker, in accord with data reported for the unique [$\mathrm{Cs}(\mu-18$ -crown-6)Cs] ${ }^{2+}$ systems (Table 2). ${ }^{8-12}$ It is important, however, ${ }^{1,2}$ that in accordance with a centrosymmetric structure of the $\left[\mathrm{Cs}_{2}(18 \text {-crown- } 6)_{3}\right]^{2+}$ moiety in the present compound, the cen-

Table 1 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Cs}_{2}(18 \text {-crown- }-6)_{3}\right]^{-}$ $\left[\mathrm{H}(\mathrm{cbto})_{2}\right]_{2} \cdot 2 \mathrm{H} \mathrm{cbto} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Cs-0 (4)	3.636(5)	$\mathrm{O}(3)-\mathrm{N}(7)$	1.299(5)
Cs-0 (4a)*	3.416(5)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.298(6)
Cs -0 (5)	3.393(5)	N (4)-C(10)	1.290(6)
Cs-0 (5a)*	3.636(5)	N (7)-C(19)	1.315(6)
Cs-0(6)	3.546(5)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.422(7)
Cs-0(6a)*	3.442(5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.434(9)
$\mathrm{Cs}-0(7)$	3.152(7)	C(19)-C(20)	1.413(7)
$\mathrm{Cs}-\mathrm{O}(8)$	3.397(7)	$\mathrm{C}(1)-\mathrm{C}(3)$	1.450(6)
Cs -0 (9)	3.182(7)	C(10)-C(12)	1.449(7)
Cs-0 (10)	3.220(7)	$\mathrm{C}(19)-\mathrm{C}(21)$	1.445(6)
Cs-0 (11)	3.413(8)	$\mathrm{C}(2)-\mathrm{N}$ (2)	1.134(7)
Cs-0 (12)	3.227(7)	$\mathrm{C}(11)-\mathrm{N}$ (5)	1.119(8)
$\mathrm{S}(1)-\mathrm{C}(3)$	1.740(4)	$\mathrm{C}(20)-\mathrm{N}(8)$	1.143(6)
$\mathrm{S}(2)-\mathrm{C}(12)$	1.741(5)	$\mathrm{C}(3)-\mathrm{N}$ (3)	1.286(5)
$\mathrm{S}(3)-\mathrm{C}(21)$	1.744(4)	$\mathrm{C}(12)-\mathrm{N}$ (6)	1.291(6)
$\mathrm{O}(1)-\mathrm{N}$ (1)	$1.305(5)$	$\mathrm{C}(21)-\mathrm{N}(9)$	1.297(5)
$\mathrm{O}(2)-\mathrm{N}(4)$	1.353(5)		
$\mathrm{O}(4)-\mathrm{Cs}-\mathrm{O}(5)$	46.5(1)	$\mathrm{C}(28)-\mathrm{O}(4)-\mathrm{C}(29)$	115.0(6)
$\mathrm{O}(4)-\mathrm{Cs}-\mathrm{O}(6 \mathrm{a})^{*}$	45.9(1)	C(30)-0 (5)-C (31)	117.9(7)
$\mathrm{O}(4)-\mathrm{Cs}-\mathrm{O}(7)$	74.9(2)	$\mathrm{C}(32)-\mathrm{O}(6)-\mathrm{C}(33)$	117.7(7)
$\mathrm{O}(4)-\mathrm{Cs}-\mathrm{O}(9)$	151.1(2)	$\mathrm{C}(3)-\mathrm{S}(1)-\mathrm{C}(9)$	88.6(2)
$\mathrm{O}(5)-\mathrm{Cs}-\mathrm{O}(6)$	47.2(1)	$\mathrm{C}(12)-\mathrm{S}(2)-\mathrm{C}(18)$	88.4(2)
$\mathrm{O}(5)-\mathrm{Cs}-\mathrm{O}(8)$	152.1(2)	$\mathrm{C}(21)-\mathrm{S}(3)-\mathrm{C}(27)$	89.1(2)
$\mathrm{O}(5)-\mathrm{Cs}-\mathrm{O}(9)$	157.7(2)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{O}(1)$	113.9(4)
$\mathrm{O}(6)-\mathrm{Cs}-\mathrm{O}(7)$	154.1(2)	$\mathrm{C}(10)-\mathrm{N}(4)-\mathrm{O}(2)$	111.5(4)
$\mathrm{O}(7)-\mathrm{Cs}-\mathrm{O}(8)$	51.6(2)	$\mathrm{C}(19)-\mathrm{N}(7)-\mathrm{O}(3)$	113.0(4)
$\mathrm{O}(7)-\mathrm{Cs}-\mathrm{O}(12)$	51.9(3)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}$ (2)	178.2(7)
$\mathrm{O}(8)-\mathrm{Cs}-\mathrm{O}(9)$	49.6(2)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(5)$	178.3(7)
$\mathrm{O}(10)-\mathrm{Cs}-\mathrm{O}(11)$	49.4(3)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{N}(8)$	177.4(5)
Cs-0(4)-Cs(a)*	75.8(1)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	117.1(4)
Cs-O(5)-Cs(a)*	76.1(1)	N (4)-C(10)-C(12)	120.1(5)
Cs-0(6)-Cs(a)*	76.7(1)	$\mathrm{N}(7)-\mathrm{C}(19)-\mathrm{C}(21)$	116.5(4)

* Symmetry transformation used to generate equivalent atom: $-x$, $1-y, 2-z$.
tral crown molecule maintains equally effective Cs-O interactions on both axial sides simultaneously. Thus the cation $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) }]^{2+}\right.$ can be regarded as an example of the almost perfect club sandwich structure. ${ }^{8}$

A lthough, the cation $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) }]^{2+}\right.$ has also been observed in the crystal structure of $\left[\mathrm{Cs}_{9}(18 \text {-crown- } 6)_{14}\right]^{9+}\left[\mathrm{R} \mathrm{h}_{22}-\right.$ $\left.(\mathrm{CO})_{35} \mathrm{H}_{\mathrm{x}}\right]^{5-}\left[\mathrm{Rh}_{22}(\mathrm{CO})_{35} \mathrm{H}_{\mathrm{x}+1}\right]^{4-, 8}$ its formation, in accordance with Bajaj and Poonia, ${ }^{2}$ should be described as the result of the additional moiety-moiety interactions under forcing conditions. Thus, the Cs-O separations in this case have a much

Table 2 Geometry of the Cs(μ-18-crown-6)Cs fragment in crystal structures

Cation	A nion	Cs-0/A		Cs...Cs/ $/ \AA$	$\mathrm{d}^{\mathrm{a}} / \AA$	R ef.
		R ange	Average			
[$\left.\mathrm{CS}_{2}(18-\mathrm{crown}-6)\right]^{\mathbf{2 +}}$	$\left[\left(p-\mathrm{MeC} 6_{6} \mathrm{H}_{4}\right) \mathrm{N}=\mathrm{NNN}=\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{M} \mathrm{e-p}\right)\right]^{-}$	3.207(7)-3.510(8)	3.382(8)	3.940(4)	1.970(4)	9
$\left[\mathrm{Cs}_{2} \mathrm{~L}\right]^{2+\mathrm{b}}$	$\mathrm{S}_{6}{ }^{2-}$	3.11(1)-3.55(1)	3.33(1)	4.022(4)	$2.011(4)$	10
$\left[\mathrm{Cs}_{2}(18-\mathrm{crown}-6)\right]^{2+c}$	$\left[\mathrm{SO}_{4}\left(\mathrm{AlM} \mathrm{e}_{3}\right)_{3}\right]^{2-}$	3.13(1)-3.49(1)	3.29(1)	3.923(4)	$1.785(5)$	11
		3.34(1)-3.59(1)	3.49(1)		2.135(5)	
$\left[\{\mathrm{Cs}(18-\mathrm{crown}-6)\}_{\infty}\right]^{\infty+}$	$\left[(\mathrm{TCNCl})_{4}\right)^{\infty}{ }^{\text {a- }}$	3.34(1)-3.68(1)	3.51(1)	4.275(4)	$2.138(4)$	12
$\left[\mathrm{Cs}_{2}(18-\mathrm{crown}-6)_{3}\right]^{2+c}$	$\left[\mathrm{Rh}_{22}(\mathrm{CO})_{35} \mathrm{H}_{\mathrm{x}}\right]^{5-}$,	3.29(8)-4.25(8)	3.75(8)	4.755(4)	2.41 (8)	8
	$\left[\mathrm{R} \mathrm{h} 22(\mathrm{CO})_{35} \mathrm{H}_{\mathrm{x}+1}\right]^{4-}$	$3.35(8)-3.96(8)$	3.70 (8)		$2.34(8)$	
$\left[\mathrm{Cs}_{2}(18-\mathrm{crown}-6)_{3}\right]^{2+}$	$\left[\mathrm{H}(\mathrm{cbto})_{2}\right]^{-}$	3.393(5)-3.636(5)	3.515(5)	4.335(1)	2.167(1)	This

a D eviation of cation from the mean oxygen atoms plane ${ }^{b} L=D$ ibenzo-18-crown- $6=6,7,9,10,17,18,20,21$-octahydrodibenzo $[b, k][1,4,7,10,13,16]-$
hexaoxacyclooctadecine. ${ }^{c}$ The central 18 -crown -6 molecule forms unequal axial contacts with caesium atoms.

Table 3 Geometry of the hydrogen bonding

Donor (D)	H ydrogen atom (H)	A cceptor (A)	Separation (\AA)			$\begin{aligned} & \text { Angle } \\ & \mathrm{D}-\mathrm{H} \cdots \mathrm{~A} /{ }^{\circ} \end{aligned}$
			D-H	A \cdots H	D...A	
O(3)	H (1)	O(1)	1.17(10)	1.32(10)	2.478(5)	170(8)
O(2)	H (2)	O(13)	1.06(9)	1.52(9)	2.520(5)	155(7)
O(13)	H (3)	N (3b)*	0.78(7)	2.16(8)	2.930(6)	170(7)
O(13)	H (4)	N (9)	0.71(6)	2.18(6)	2.877(6)	165(7)

* Symmetry transformation used to generate equivalent atom: $-1+x$, $1+y, z$.
wider range $\left[3.29(8)-4.32(8) \AA\right.$, Table 2] ${ }^{8}$ than those observed for the present compound and other caesium-18-crown-6 species. ${ }^{8-12}$ A nother comparable structural precedent is the unique crystal structure of a $[\mathrm{Cs}(18-c r o w n-6)]\left[\mathrm{TcNCl}_{4}\right]$ complex, ${ }^{12}$ containing polymeric cations $\left[\{\mathrm{Cs}(18 \text {-crown- } 6)\}_{\infty}\right]^{\infty+}$ of an 'infinite sandwich'. In this case the Cs-0 [average ca. 3.51(1) \AA] and Cs \cdots Cs [4.275(4) \AA, Table 2] separations are actually equal to those observed in the present compound (Tables 1, 2), suggesting the close structural resemblance in the $\mathrm{Cs}(\mu-18$ -crown-6)Cs bridging.

The central 18-crown-6 molecule (B) is centrosymmetric and exists in the $D_{3 d}$ conformation, the most stable conformation for this ligand in complexes with metal ions. ${ }^{13}$ Both the $\mathrm{C}-0$ [1.357(8)-1.377(9), average ca. 1.36(1) \AA] and C-C [1.42(1)1.44(1), average ca. 1.43(1) \AA] distances are slightly shortened with respect to the standard separations in crown ethers ($\mathrm{C}-\mathrm{O}$ 1.43 ± 0.02, C-C $1.49 \pm 0.02 \AA^{14}$). This phenomenon is well known for macrocyclic compounds and has been ascribed to an artificial effect arising from curvilinear vibrations. ${ }^{12,15}$ The high thermal motion of the atoms of the border 18 -crown- 6 molecules (A) (Fig. 1) indicates possible disorder, which may be attributed to the large size of the $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) })_{3}\right]^{2+}$ cation and the insensitivity of the packing to the conformation of the crown molecules. ${ }^{8,12,16}$ The high thermal motion precludes further discussion. We note, however, that the oxygen atoms 0 (7)O(12) are actually coplanar, the maximum deviation from their mean plane being ca. $0.046(6) \AA$.

Considering the club sandwich cation stability of the present compound, it is suggested that moiety-moiety interactions are important in the packing of the anionic part of the structure. A similar conclusion was reached by Baldas et al. ${ }^{12}$ for [Cs-(18-crown-6)] [TCN CI ${ }_{4}$].

There are four types of hydrogen bonds involving both the NOH groups and water of crystallization (Table 3). The strong, nearly symmetrical, hydrogen bond $O(1) \cdots O(3)$ of ca. 2.478 (5) A connects the appropriate fragments L (B and C, Fig. 2) in the hydrogen oximate anion $\left[\mathrm{H}(\mathrm{cbto})_{2}\right]^{-}$, which is a typical feature, cf. [$\mathrm{TI}\left(18\right.$-crown-6)][H (cbto) ${ }_{2}$] documented earlier. ${ }^{7}$ The hydrogen bonding involving fragments of composition H cbto. $\mathrm{H}_{2} \mathrm{O}$ links the neighbouring anions $[(x, y, z)$ and ($-1+x, 1+y$, z)] to give chains along the $0 y$ direction (Figs. 2 and 3). The
distance $\mathrm{O}(2) \cdots \mathrm{O}(13)$ in the $\mathrm{Hcbto} \cdot \mathrm{H}_{2} \mathrm{O}$ fragment of ca. $2.520(5) \AA$ and both the distances $0(13) \cdots \mathrm{N}(9) 2.877(6)$ and $0(13) \cdots N(3 b)(-1+x, 1+y, z) 2.930(6) \AA$ together with the appropriate angles at the hydrogen atoms (Table 3) also indicate relatively strong hydrogen bonding. ${ }^{6,17}$
Between the hydrogen-bonded chains in the crystal, considerably shortened van der Waals contacts $\mathrm{S}(1) \cdots \mathrm{S}(2 \mathrm{c})$ ($1+x, y, z$) $3.461(2) \AA$ are observed (r_{s} (van der Waals) 1.85 $\AA{ }^{6}$), which connect neighbouring chains $[(x, y, z)$ and ($1+x, y$, z)] into layers running parallel to the xy plane (Fig. 3). A similar type of sulfur-sulfur interactions was described earlier for thiadiazole derivatives. ${ }^{18}$ The layers pack one on top of the other, yielding linear channels running down the $0 x$ direction. These are filled with the large $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) })_{3}\right]^{2+}$ cations (Fig. 3). A pparently, the cations are held inside the channels by electrostatic forces, which is typical for structures involving large cations. ${ }^{19}$ Thus, we may conclude that the crystal packing of the present compound differs from that of $\left[\mathrm{Cs}_{9}(18 \text {-crown-6) })_{14}\right]^{9+}$ $\left[R h_{22}(C O)_{35} H_{x}\right]^{5-}\left[R h_{22}(C O)_{35} \mathrm{H}_{x+1}\right]^{4-}$ and therefore cannot be an obvious reason to discuss the $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) })_{3}\right]^{2+}$ cation structure in terms of forced conditions. ${ }^{1,2} \mathrm{M}$ oreover, for similar systems the stability of the higher 'club sandwiches' with 18-crown-6 may be assumed. ${ }^{12}$

Experimental

The compounds $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and 18 -crown- 6 were commercial products of reagent grade, used without further purification. The oxime was prepared as described previously. ${ }^{20}$

Preparation of caesium-18-crown-6 derivative

To a hot solution of the oxime ($0.202 \mathrm{~g}, 1.0 \mathrm{mmol}$) in 95% ethanol ($40 \mathrm{~cm}^{3}$) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.163 \mathrm{~g}, 0.5 \mathrm{mmol})$. The mixture was stirred for 20 min and then 18 -crown-6 $(0.264 \mathrm{~g}, 1.0$ mmol) and additional H cbto ($0.202 \mathrm{~g}, 1.0 \mathrm{mmol}$) were added. The clear yellow solution obtained on standing yielded yellow prismatic crystals suitable for X -ray diffraction. The yield was 0.51 g (65% with respect to the oxime used) (Found: C, 47.1; H, 4.4; $\mathrm{N}, 11.0$. Calc. for $\mathrm{C}_{90} \mathrm{H}_{104} \mathrm{C} \mathrm{s}_{2} \mathrm{~N}_{18} \mathrm{O}_{26} \mathrm{~S}_{6}$: C, 46.8; $\mathrm{H}, 4.5 ; \mathrm{N}$, 10.9\%).

C rystallography

M easurements were made on an Enraf-N onius CAD-4 diffractometer with $\mathrm{M} 0-\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) operating in the $\omega-2 \theta$ scan mode. A ccurate unit-cell parameters and the orientation matrix for data collection were obtained from leastsquares refinement, using the setting angles of 24 reflections in the range $13<\theta<15^{\circ}$. The essential experimental conditions and resulting crystal data are given in Table 4. The structure was solved by direct methods and refined by full-matrix leastsquares techniques in the anisotropic approximation using

Table 4 Crystal data for $\left[\mathrm{Cs}_{2}(18 \text {-crown-6) })_{3}\left[\mathrm{H}(\mathrm{cbto})_{2}\right]_{2} \cdot 2 \mathrm{H}\right.$ cbto $\cdot 2 \mathrm{H}_{2} \mathrm{O}$

Formula	$\mathrm{C}_{90} \mathrm{H}_{104} \mathrm{CS}_{2} \mathrm{~N}_{18} \mathrm{O}_{26} \mathrm{~S}_{6}$
Crystal system	Triclinic
Space group	P 1
a/Å	10.598(2)
b/Å	13.465(3)
c/Å	20.235(4)
$\alpha /{ }^{\circ}$	75.31(3)
$\beta /{ }^{\circ}$	89.99(3)
$\gamma /{ }^{\circ}$	71.42(3)
U / \AA^{3}	2637.4(9)
Z	1
$\mathrm{D}_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.456
$\mu(\mathrm{Mo} 0-\mathrm{K} \alpha) / \mathrm{cm}^{-1}$	8.89
F(000)	1184
θ R ange for data collection/ ${ }^{\circ}$	1.0-22.5
Total number of reflections	7349
N umber of unique reflections	6896 ($\mathrm{R}_{\text {int }} 0.023$)
N umber of observed reflections [l>2\%(I)]	5701
D ata used	6895
Parameters refined	656
R 1 (obs.), R 1 (all data)	0.044, 0.067
wR 2(obs.), wR 2(all data)	0.119, 0.132
G oodness of fit on F^{2}	1.082
D ata-to-parameter ratio	10.5
M aximum, minimum difference peaks/e \AA^{-3}	0.49, -0.44

SHELXS 86 and SHELXL 93. ${ }^{21,22}$ A bsorption corrections were not applied. All O-bonded hydrogen atoms were located from the Fourier-difference syntheses and refined isotropically. The positions of the CH hydrogen atoms were idealized and included in the calculations with their isotropic U values invariant at $0.08 \AA^{2}$. Judging by the large values of U [0.152(3)$\left.0.39(3) \AA^{2}\right]$ and poor bond distances and angles in the OCH_{2} $\mathrm{CH}_{2} \mathrm{O}$ linkage of macrocyclic molecule A (Fig. 1) this molecule is disordered. All attempts to divide the oscillatory movement between two positions with partial occupancies of 50% were not successful.
A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the

CCDC for this material should quote the full literature citation and the reference number 186/397.

References

1 N. S. Poonia, in Progress in M acrocyclic Chemistry, eds. R. M. Izatt and J. J. Christensen, Wiley, N ew York, 1979, vol. 1, pp. 115-155.
2 A. V. Bajaj and N. S. Poonia, C oord. Chem. Rev., 1988, 87, 55.
3 N. S. Poonia and A. V. Bajaj, Chem. Rev., 1979, 79, 389.
4 F. R. Fronczek and R. D. Gandour, in Cation binding by M acrocycles: Complexation of Cationic Species by Crown Ethers, eds. Y. Inone and G. W. G okel, M arcel Dekker, N ew York, 1991, p. 311.

5 R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb and J. J. Christensen, C hem. R ev., 1985, 85, 271.

6 A. F. Wells, Structural Inorganic Chemistry, Clarendon, Oxford, 1991.

7 K. V. D omasevitch, V. V. Skopenko and J. Sieler, Inorg. Chim. A cta, 1996, 249/2, 151.
8 J. L. Vidal, R. C. Schoening and J. M. Troup, Inorg. Chem., 1981, 20, 227.

9 S. Dieterich and J. Strähle, Z. N aturforsch., Teil B, 1993, 48, 1574.
10 M. Schnock and P. Böttcher, Z. N aturforsch., Teil B, 1995, 50, 721.
11 C. M. M eans, N. C. M eans, S. G. Bott and J. L. A twood, J. A m. Chem. Soc., 1984, 106, 7627.
12 J. Baldas, S. F. Colmanet and G. A. Williams, J. Chem. Soc., Chem. Commun., 1991, 954.
13 M . D obler, C himia, 1984, 38, 415.
14 A. Yu. Tsivadze, A. A. Varnek and V. E. K hutorsky, C oordination Compounds of M etals with Crown Ligands, N auka, M oscow, 1991, pp. 43-100.
15 J. D. Dunitz, M. Dobler, P. Seiler and R. P. Phizackerley, Acta C rystallogr., Sect. B, 1974, 30, 2733.
16 R. D. Rogers and A. H. B ond, Inorg. Chim. Acta, 1992, 192, 163.
17 K. V. D omasevitch, E. N. K arpenko and E. B. Rusanov, Z h. O bshch. K him., 1995, 65, 945.
18 Comprehensive H eterocyclic Chemistry, eds. A. R. K atrizky, C. W. R ees and K. T. Potts, Pergamon, Oxford, 1984, vol. 6.

19 S. D hingra and M. G. K anatzidis, Science, 1992, 258, 1769.
20 A. A. M okhir, V. V. Polovinko and K . V. D omasevitch, Z h. O bshch. K him., 1995, 65, 1038.
21 G. M. Sheldrick, SHELXL 93, A system of computer programs for X -ray structure determination, U niversity of G öttingen, 1993.
22 G. M. Sheldrick, A cta C rystallogr., Sect. A, 1990, 46, 467.

Received 17th September 1996; Paper 6/06428K

